Water As The Most Crucial Health Related Challenge in Rural Africa

Janvier Gasana, MD, PhD
Associate Professor Robert Stempel College of Public Health & Social Work
Dept of Environmental & Occupational Health
Florida International University

12th AFRICANDO 2009
Workshop and Expo on Smart, Appropriate and resource Efficient Technologies for Rural Communities
(NUTS AND BOLTS OF SMART APPROPRIATE TECHNOLOGIES FOR RURAL COMMUNITY DEVELOPMENT – FOCUS ON HEALTH)

September 18-19, 2009
MIAMI BEACH RESORT
4833 COLLINS AVE, MIAMI BEACH, FL 33140
Health Risks

Water can be a source of disease in people through at least five avenues:

1. Water-borne diseases
2. Water-privation diseases
3. Water-based diseases
4. Water-related diseases
5. Water-dispersed infections

Source: Yassi, 2001
Waterborne Diseases

• Arise from the contamination of water by human or animal feces or urine infected by pathogenic viruses or bacteria, which are directly transmitted
 – when the water is drunk or used in the preparation of food.

• Cholera, typhoid, and cryptosporidiosis are typical examples of Waterborne diseases
Water-privation diseases

- This category of diseases is affected more by the quantity of water rather than by quality.
- These diseases spread through direct contact with infected people or materials contaminated with the infectious agent.
- Infrequent washing and inadequate personal hygiene are the main factors in these types of diseases, such as certain types of diarrheal diseases, helminths, and skin and eye infections.
Water-based diseases

- In these diseases, water provides the habitat for intermediate host organisms in which some parasites pass part of their life cycle.
- These are later the cause of disease in people as their infective larval forms in fresh water find their way back to humans, either by boring through wet skin or by being ingested with water plants, minute water crustacea, or raw or inadequately cooked fish.
- **Schistosomiasis** is an example of a water-based disease.
Water-related diseases

• Water may provide a habitat for insect vectors of water-related diseases.
• Mosquitoes breed in water and the adult mosquitoes may transmit parasite diseases, such as
 – malaria, and
 – virus infections, such as
 • dengue,
 • yellow fever, and
 • Japanese encephalitis.
Water-dispersed infections

• A fifth category of diseases associated with water is emerging in developed countries—infecteds whose pathogens can proliferate in freshwater and enter the body through the respiratory tract.

• Some freshwater amoebae that are not usually pathogenic can proliferate in warm water, and if they enter the host in large numbers, they can invade the body along the olfactory tracts and cause fatal meningitis.

• These bacteria can be dispersed as aerosols from air-conditioning systems; an example of this type of disease is Legionella.
Human Wastes

• Human Excreta and the lack of adequate personal and domestic hygiene – implicated in the transmission of many infectious diseases including typhoid, cholera, polio, ascariasis.

• 2.2 Million people die annually from diarrheal diseases and 10% of the people are severely infected with intestinal worms related to improper waste and excreta management.

• Proper excreta disposal and minimum levels of personal and domestic hygiene are essential for protection of public health.

• Safe excreta disposal and handling act as a primary barrier for preventing excreted pathogens from entering the environment.
Magnitude of the Problem

• WHO estimated that every 8 seconds a child died from a water-related disease and that **each year 5,000,000 people died** from illnesses linked to unsafe drinking water or inadequate sanitation.

• Waterborne diseases outbreak are due to **bacterial**, **viral** and **parasitic** microorganism associated with the consumption of untreated or improperly treated drinking water.
Causes of Gastrointestinal Illnesses

• **Parasitic** agents such as cryptosporidium

• **Bacterial** agents e.g. salmonella, shigella, E. Coli

• **Viruses** e.g. rotaviruses, adenoviruses

• Transmission can be in the form of water route, person to person, animal to human, food borne and aerosol routes

• Diarrhoeal disease can be due to milk or soy intolerance, diet changes, side effect of prescription drugs e.g. antibiotics
Transmission Routes

- Disease transmission is determined by several pathogen related factors including:

 - An organism ability to survive or multiply in the environments (some pathogens require the presence of specific intermediate hosts to complete their lifecycles)

 - Latent periods (many pathogens are immediately infectious, others may require a period of time before they become infective)

 - An organism ability to infect the host (some pathogens can cause infections when present in small numbers e.g. ascaris, others may require million or more organisms to cause infection)
Disease Transmission

- Disease transmission is also affected by host characteristics and behavior, including:
 - Immunity,
 - Nutritional status,
 - Health status,
 - Age,
 - Sex,
 - Personal hygiene,
 - Food hygiene.
4Fs and Prevention Measures

Diagram:
- Fingers
 - Protection of food (e.g., safe waste reuse)
 - Hand-washing after defecation, after cleaning children’s bottoms, before handling food, before eating or feeding

- Flies
 - Protection of food (e.g., storage)
 - Protection of food (e.g., handling, preparation)

- Fields
 - Protection of water in transit and in the home

- Fluids
 - Protection of water sources

- Faeces
 - VIP latrines
 - Pit latrines

- New Host
 - Safe eating (e.g., washing fruits and vegetables before eating them raw)

Primary Barrier:
1. Pit latrines
2. Primary Barrier
3. VIP latrines

Secondary Barrier:
4. Protection of food (e.g., handling, preparation)
5. Protection of food (e.g., storage)
6. Protection of food (e.g., safe waste reuse)
7. Protection of water in transit and in the home
8. Protection of water sources
9. Secondary Barrier
CLIMATE CHANGE AND DISEASES
Mars
Thin atmosphere
(Almost all CO₂ in ground)
Average temperature: -50°C

Earth
0.03% of CO₂ in the atmosphere
Average temperature: +15°C

Venus
Thick atmosphere containing 96% of CO₂
Average temperature: +420°C
The Greenhouse effect

Solar radiation passes through the clear atmosphere.

Incoming solar radiation: 343 Watt per m²

Net incoming solar radiation: 240 Watt per m²

Some solar radiation is reflected by the atmosphere and earth’s surface

Outgoing solar radiation: 103 Watt per m²

Some of the infrared radiation passes through the atmosphere and is lost in space

Net outgoing infrared radiation: 240 Watt per m²

Some of the infrared radiation is absorbed and re-emitted by the greenhouse gas molecules. The direct effect is the warming of the earth’s surface and the troposphere.

Surface gains more heat and infrared radiation is emitted again

Solar energy is absorbed by the earth’s surface and warms it...

... and is converted into heat causing the emission of longwave (infrared) radiation back to the atmosphere
Global mean temperatures are rising faster with time.

<table>
<thead>
<tr>
<th>Period</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.128 ± 0.026</td>
</tr>
<tr>
<td>100</td>
<td>0.074 ± 0.018</td>
</tr>
</tbody>
</table>
Potential Impacts of Climate Change on Human Health

Climate change effects:
• Temperature
• Sea level
• Precipitation

Heat
• Morbidity/mortality

Severe weather events
• Morbidity/mortality

Vector biology

Air pollutants
• Infectious diseases
• Respiratory disease
• Malnutrition

Food supply

Civil conflict
• Morbidity/mortality/dislocation
Infectious diseases

- **Temperature** affects vector and pathogen biology
- **Humidity** favors growth of some vectors
- **Precipitation** favors growth of some vectors
- **Wind** contributes to dispersal of insects
<table>
<thead>
<tr>
<th>Disease</th>
<th>Vector</th>
<th>Population at risk (million)</th>
<th>Number of people currently infected or new cases per year</th>
<th>Present distribution</th>
<th>Likelihood of altered distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Mosquito</td>
<td>2,400(^2)</td>
<td>300-500 million</td>
<td>Tropics and Subtropics</td>
<td>Highly likely</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Water snail</td>
<td>600</td>
<td>200 million</td>
<td>Tropics and Subtropics</td>
<td>Very likely</td>
</tr>
<tr>
<td>Lymphatic Filariasis</td>
<td>Mosquito</td>
<td>1,094(^3)</td>
<td>117 million</td>
<td>Tropics and Subtropics</td>
<td>Likely</td>
</tr>
<tr>
<td>African Trypanosomiasis (Sleeping sickness)</td>
<td>Tsetse fly</td>
<td>55(^4)</td>
<td>250,000 to 300,000 cases per year</td>
<td>Tropical Africa</td>
<td>Unknown</td>
</tr>
<tr>
<td>Dracunculiasis (Guinea worm)</td>
<td>Crustacean (Copepod)</td>
<td>100(^5)</td>
<td>100,000 per year</td>
<td>South Asia, Arabian Peninsula, Central-West Africa</td>
<td>Unknown</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>Phlebotomine sand fly</td>
<td>350</td>
<td>12 million infected, 500,000 new cases per year(^6)</td>
<td>Asia, Southern Europe, Africa, Americas</td>
<td>Unknown</td>
</tr>
<tr>
<td>Onchocerciasis (River blindness)</td>
<td>Black fly</td>
<td>123</td>
<td>17.5 million</td>
<td>Africa, Latin America</td>
<td>Unknown</td>
</tr>
<tr>
<td>American Trypanosomiasis (Chagas disease)</td>
<td>Triatome bug</td>
<td>100(^7)</td>
<td>18 million</td>
<td>Central and South America</td>
<td>Unknown</td>
</tr>
<tr>
<td>Dengue</td>
<td>Mosquito</td>
<td>1,800</td>
<td>10-30 million per year</td>
<td>All Tropical countries</td>
<td>Unknown</td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>Mosquito</td>
<td>450</td>
<td>more than 5,000 cases per year</td>
<td>Tropical South America, Africa</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

1. Top three entries are population-prorated projections, based on 1989 estimates.
5. Ranque, personal communication.
6. Annual incidence of visceral leishmaniasis; annual incidence of cutaneous leishmaniasis is 1-1.5 million cases/yr (PAHO, 1994).

Source: Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses, contribution of working group 2 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.
Three examples

- Malaria
- Dengue fever
- Cholera
Global Warming's greatest threat may also be the smallest.
Malaria

• Caused by four species of the protozoan *Plasmodium*: falciparum, vivax, ovale, malariae.

• Transmitted by *anopheline* mosquitoes.

• Most extensive tropical disease in the world.
 – 300-500 million active cases/year

• Major gains in control over the last 50 years, but these gains are threatened.
 – Changes in land use
 – Erosion of clinical services
 – Antibiotic resistance
 – Refugee and war crises
Malaria

- Symptoms: fever, shivering, joint pain, headache, vomiting, seizures, coma. Severe anemia may occur. Death may occur.

- Risk groups:
 - children
 - poor
 - pregnant women

- Outbreaks with severe weather events.

- Both plasmodium and anopheline mosquitoes are temperature-sensitive.
Relationship between temperature and malaria parasite development time inside mosquito (“extrinsic incubation period” or EIP). EIP shortens at higher temps, so mosquitoes infectious sooner.
Malaria

• Pathogen (*plasmodium*) transmitted by *anopheline* mosquitoes; both are temperature sensitive.
Relationship between malaria and altitude, Zimbabwe.

Altitude a good surrogate for temperature: the average temperature decrease with height = 6°C per 1000 meters

Source: Taylor and Mutambu, 1986
2000 2025 2050 2075

Source: Hartman, Ebi, et al., 2001
Source: Hartman, Ebi, et al., 2001
Source: Hartman, Ebi, et al., 2001
Baseline 2000 2025 2050 2075

Source: Hartman, Ebi, et al., 2001
Potential malaria risk areas with climate change
Dengue/ Dengue Hemorrhagic Fever

- Caused by one of four distinct flavivirus serotypes
- No vaccine or treatment available (vaccine trials currently underway)
- DHF average case fatality rate: 5%
- Estimated 50 to 100 million cases each year of dengue, several hundred thousand cases of DHF
 - Spread by *Aedes* mosquito; *Ae. Aegypti* does not survive below 50 °F (10 °C), epidemic transmission unlikely below 68 °F (20 °C)
 - Range is expanding
Distribution of *Ae. Aegypti* mosquito in the Americas in 1970 (at the end of the mosquito eradication program) and in 1997
Ae. aegypti sensitivity to temperature

Fig. 5. Developmental rate per hour of Ae. aegypti larvae to median pupation (data from Fig. 1 in Gilpin & McClelland 1979) as a function of temperature.
Cholera

- First described over 2,000 years ago
- Modern pandemics began in 1817
- Seventh pandemic began in 1961 in Indonesia, struck South America in 1991
- *V. cholera* was recognized to survive in marine phytoplankton
- Phytoplankton respond to temperature and other factors.
Fig. 1. Relationship between sea surface temperature and cholera case data in Bangladesh from January to December 1994.
Solutions (Water)

Solutions include treatment which has the following main steps:

– Sedimentation
– Coagulation-flocculation,
– Filtration, and
– Disinfection.
Water Treatment

- Water treatment should reduce to acceptable levels or remove entirely all contaminants present in the water.
- Techniques utilized are:
 - Sedimentation
 - Coagulation-flocculation
 - Filtration
 - Disinfection
 - Conditioning
 - Softening
 - Fluoridation
 - Removal of tastes and odors
 - Corrosion control
 - Algae control
 - Aeration
Sedimentation

• Sedimentation is the settling out of comparatively heavy suspended material in water because of gravity
Coagulation

- Coagulation is the forming of flocculent particles in a liquid by adding chemicals. Alum (hydrated aluminum sulfate) is mixed with turbid water and then allowed to remain quiet.
Filtration

• Filtration is the removal of suspended material from water as it passes through beds of porous material.

• The amount of removal depends on character and size of filter media, the thickness of the porous media, and the size and quantity of suspended solids.

• Use of various layers of sand is quite helpful in rural areas.
Disinfection

• Disinfecting the water is the most important water treatment process utilized to destroy all pathogenic bacteria or harmful organisms.
• However, proper disinfection will not occur unless the organic material and other materials are removed prior to the disinfecting process.
• Disinfecting agents may consist of chlorine, ultraviolet light, or iodine.
• The most frequent treatment agent is chlorine.
Impact of Water Supply and Sanitation on Diarrheal Morbidity among Young Children in the Socioeconomic and Cultural Context of Rwanda [Environmental Research Section A 90, 76-88 (2002)]

• The contamination, first thought to be only a function of rainfall, turned out to be a very complex phenomenon.

• Water in homes was contaminated (43.4%) with more than 1100 total coliforms/100 ml due to the use of unclean utensils to transport and store water.

• This socio-economic and cultural problem should be addressed with health education about sanitation.

• The latrines (found in 43.8% of families) presented a double-edge problem.

• The extremely high population density reduced the surface area of land per family, which resulted in a severe nutritional deficit (15% of the children) affecting mainly young children, rendering them more susceptible to diarrhea (three episodes/child/year).
• The results of the study showed that using an artificial drinking water treatment system decreased the concentration of coliforms from 4 to 1100 total coliforms per 100/mi to 3 - 5 total coliforms per 100/ml.
• The density of the population determined the frequency of contamination.
• Rainfall played a contributory role to the contamination of water.
• Personal sanitation was another determining factor for the increase in contamination (hygiene practices, storage of the water, latrines (43.8% of population had no latrines)).
• Socioeconomic status played a contributing role to the poor standard of living (substandard housing, agricultural subsistence, and a low educational level of 2.8 years on average).
• Poor nutritional status increased the susceptibility to diarrheal diseases (on average, three episodes per child per year).
• Malnutrition increases the severity and duration of diarrhea, and diarrhea may cause malnutrition.
• Water provision is seen by a large sector of people as the most fundamental means of survival.
• However, with regard to health challenges facing the developing countries, sanitation is an area that is not being adequately addressed, primarily because of a lack of demand.
• This problem is being exacerbated by some development organizations that provide “free” sanitation without people appreciating the need for sanitation.
• The control of diarrheal diseases must be a comprehensive program including the water supply, excreta disposal, health education, and improvement of the standard of living.

• **There is no best way to achieve health improvements, except that it must be by people themselves.**

• Interventions in water supply and sanitation infrastructure, together with hygiene education and the extension of primary health care services in Rwanda, need to be implemented within an integrated multidisciplinary framework.

• This should result in a significant reduction in the incidence of diarrheal disease and its severity (including death), which may be associated with a reallocation of health care resources to other pressing health and social needs.